ObjectDetectionParameters Class Reference

Structure containing a set of parameters for the object detection module. More...

Functions

 ObjectDetectionParameters (bool enable_tracking_=true, bool enable_segmentation_=false, OBJECT_DETECTION_MODEL detection_model=OBJECT_DETECTION_MODEL::MULTI_CLASS_BOX_FAST, float max_range_=-1.f, BatchParameters batch_trajectories_parameters=BatchParameters(), OBJECT_FILTERING_MODE filtering_mode_=OBJECT_FILTERING_MODE::NMS3D, float prediction_timeout_s=0.2f, bool allow_reduced_precision_inference=false, unsigned int instance_id=0, const sl::String &fused_objects_group_name="", const sl::String &custom_onnx_file="", const sl::Resolution &custom_onnx_dynamic_input_shape=sl::Resolution(512, 512))
 Default constructor. More...
 
bool save (String filename, SERIALIZATION_FORMAT format=SERIALIZATION_FORMAT::JSON) const
 Saves the current set of parameters into a file to be reloaded with the load() method. More...
 
bool load (String filename, SERIALIZATION_FORMAT format=SERIALIZATION_FORMAT::JSON)
 Loads a set of parameters from the values contained in a previously saved file. More...
 
bool encode (String &serialized_content, SERIALIZATION_FORMAT format=SERIALIZATION_FORMAT::JSON) const
 Generate a JSON Object (with the struct type as a key) containing the serialized struct, converted into a string. More...
 
bool decode (const String &serialized_content, SERIALIZATION_FORMAT format=SERIALIZATION_FORMAT::JSON)
 Fill the structure from the serialized json object contained in the input string. More...
 
bool operator== (const ObjectDetectionParameters &param1) const
 
bool operator!= (const ObjectDetectionParameters &param1) const
 

Attributes

unsigned int instance_module_id = 0
 Id of the module instance. More...
 
bool enable_tracking = true
 Whether the object detection system includes object tracking capabilities across a sequence of images. More...
 
bool enable_segmentation = false
 Whether the object masks will be computed. More...
 
OBJECT_DETECTION_MODEL detection_model = OBJECT_DETECTION_MODEL::MULTI_CLASS_BOX_FAST
 sl::OBJECT_DETECTION_MODEL to use. More...
 
sl::String fused_objects_group_name
 In a multi camera setup, specify which group this model belongs to. More...
 
sl::String custom_onnx_file
 Path to the YOLO-like onnx file for custom object detection ran in the ZED SDK. More...
 
sl::Resolution custom_onnx_dynamic_input_shape
 Resolution to the YOLO-like onnx file for custom object detection ran in the ZED SDK. This resolution defines the input tensor size for dynamic shape ONNX model only. The batch and channel dimensions are automatically handled, it assumes it's color images like default YOLO models. More...
 
float max_range = -1.f
 Upper depth range for detections. More...
 
BatchParameters batch_parameters
 Batching system parameters. More...
 
OBJECT_FILTERING_MODE filtering_mode = OBJECT_FILTERING_MODE::NMS3D
 Filtering mode that should be applied to raw detections. More...
 
float prediction_timeout_s
 Prediction duration of the ZED SDK when an object is not detected anymore before switching its state to sl::OBJECT_TRACKING_STATE::SEARCHING. More...
 
bool allow_reduced_precision_inference
 Whether to allow inference to run at a lower precision to improve runtime and memory usage. More...
 

Detailed Description

Structure containing a set of parameters for the object detection module.

The default constructor sets all parameters to their default settings.

Note
Parameters can be adjusted by the user.

Constructor and Destructor

◆ ObjectDetectionParameters()

ObjectDetectionParameters ( bool  enable_tracking_ = true,
bool  enable_segmentation_ = false,
OBJECT_DETECTION_MODEL  detection_model = OBJECT_DETECTION_MODEL::MULTI_CLASS_BOX_FAST,
float  max_range_ = -1.f,
BatchParameters  batch_trajectories_parameters = BatchParameters(),
OBJECT_FILTERING_MODE  filtering_mode_ = OBJECT_FILTERING_MODE::NMS3D,
float  prediction_timeout_s = 0.2f,
bool  allow_reduced_precision_inference = false,
unsigned int  instance_id = 0,
const sl::String fused_objects_group_name = "",
const sl::String custom_onnx_file = "",
const sl::Resolution custom_onnx_dynamic_input_shape = sl::Resolution(512, 512) 
)

Default constructor.

All the parameters are set to their default values.

Functions

◆ save()

bool save ( String  filename,
SERIALIZATION_FORMAT  format = SERIALIZATION_FORMAT::JSON 
) const

Saves the current set of parameters into a file to be reloaded with the load() method.

Parameters
filename: Name of the file which will be created to store the parameters (extension '.yml' will be added if not set).
Returns
True if the file was successfully saved, otherwise false.
Warning
For security reasons, the file must not already exist.
In case a file already exists, the method will return false and existing file will not be updated.

◆ load()

bool load ( String  filename,
SERIALIZATION_FORMAT  format = SERIALIZATION_FORMAT::JSON 
)

Loads a set of parameters from the values contained in a previously saved file.

Parameters
filename: Path to the file from which the parameters will be loaded (extension '.yml' will be added at the end of the filename if not detected).
Returns
True if the file was successfully loaded, otherwise false.

◆ encode()

bool encode ( String serialized_content,
SERIALIZATION_FORMAT  format = SERIALIZATION_FORMAT::JSON 
) const

Generate a JSON Object (with the struct type as a key) containing the serialized struct, converted into a string.

Parameters
serialized_contentoutput string containing the JSON Object
formatserialization format, default is JSON
Returns
True if file was successfully saved, otherwise false.

◆ decode()

bool decode ( const String serialized_content,
SERIALIZATION_FORMAT  format = SERIALIZATION_FORMAT::JSON 
)

Fill the structure from the serialized json object contained in the input string.

Parameters
serialized_contentinput string containing the JSON Object
formatserialization format, default is JSON
Returns
True if the decoding was successful, otherwise false.

◆ operator==()

bool operator== ( const ObjectDetectionParameters param1) const

Comparison operator ==

Parameters
ObjectDetectionParametersto compare
Returns
true if the two struct are identical

◆ operator!=()

bool operator!= ( const ObjectDetectionParameters param1) const

Comparison operator !=

Parameters
ObjectDetectionParametersto compare
Returns
true if the two struct are different

Variables

◆ instance_module_id

unsigned int instance_module_id = 0

Id of the module instance.

This is used to identify which object detection module instance is used.

◆ enable_tracking

bool enable_tracking = true

Whether the object detection system includes object tracking capabilities across a sequence of images.

◆ enable_segmentation

bool enable_segmentation = false

Whether the object masks will be computed.

◆ detection_model

OBJECT_DETECTION_MODEL detection_model = OBJECT_DETECTION_MODEL::MULTI_CLASS_BOX_FAST

sl::OBJECT_DETECTION_MODEL to use.

◆ fused_objects_group_name

sl::String fused_objects_group_name

In a multi camera setup, specify which group this model belongs to.

In a multi camera setup, multiple cameras can be used to detect objects and multiple detector having similar output layout can see the same object. Therefore, Fusion will fuse together the outputs received by multiple detectors only if they are part of the same fused_objects_group_name.

Note
This parameter is not used when not using a multi-camera setup and must be set in a multi camera setup.

◆ custom_onnx_file

sl::String custom_onnx_file

Path to the YOLO-like onnx file for custom object detection ran in the ZED SDK.

When detection_model is OBJECT_DETECTION_MODEL::CUSTOM_YOLOLIKE_BOX_OBJECTS, a onnx model must be passed so that the ZED SDK can optimize it for your GPU and run inference on it.

The resulting optimized model will be saved for re-use in the future.

Attention
- The model must be a YOLO-like model.
- The caching uses the deserialized custom_onnx_file along with your GPU specs to decide whether to use the cached optmized model or to optimize the passed onnx model. If you change the weights of the onnx file and pass the same path, the ZED SDK will detect the difference and optimize the new model.
Note
This parameter is useless when detection_model is not OBJECT_DETECTION_MODEL::CUSTOM_YOLOLIKE_BOX_OBJECTS.

◆ custom_onnx_dynamic_input_shape

sl::Resolution custom_onnx_dynamic_input_shape

Resolution to the YOLO-like onnx file for custom object detection ran in the ZED SDK. This resolution defines the input tensor size for dynamic shape ONNX model only. The batch and channel dimensions are automatically handled, it assumes it's color images like default YOLO models.

Note
This parameter is only used when detection_model is OBJECT_DETECTION_MODEL::CUSTOM_YOLOLIKE_BOX_OBJECTS and the provided ONNX file is using dynamic shapes.
Attention
- Multiple model only support squared images

\default Squared images 512x512 (input tensor will be 1x3x512x512)

◆ max_range

float max_range = -1.f

Upper depth range for detections.

Default: -1.f (value set in sl::InitParameters.depth_maximum_distance)

Note
The value cannot be greater than sl::InitParameters.depth_maximum_distance and its unit is defined in sl::InitParameters.coordinate_units.

◆ batch_parameters

BatchParameters batch_parameters

Batching system parameters.

Batching system (introduced in 3.5) performs short-term re-identification with deep-learning and trajectories filtering.
sl::BatchParameters.enable must to be true to use this feature (by default disabled).

◆ filtering_mode

Filtering mode that should be applied to raw detections.

Default: sl::OBJECT_FILTERING_MODE::NMS_3D (same behavior as previous ZED SDK version)

Note
This parameter is only used in detection model sl::OBJECT_DETECTION_MODEL::MULTI_CLASS_BOX_XXX and sl::OBJECT_DETECTION_MODEL::CUSTOM_BOX_OBJECTS.
For custom object, it is recommended to use sl::OBJECT_FILTERING_MODE::NMS_3D_PER_CLASS or sl::OBJECT_FILTERING_MODE::NONE.
In this case, you might need to add your own NMS filter before ingesting the boxes into the object detection module.

◆ prediction_timeout_s

float prediction_timeout_s

Prediction duration of the ZED SDK when an object is not detected anymore before switching its state to sl::OBJECT_TRACKING_STATE::SEARCHING.

It prevents the jittering of the object state when there is a short misdetection.
The user can define their own prediction time duration.

Note
During this time, the object will have sl::OBJECT_TRACKING_STATE::OK state even if it is not detected.
The duration is expressed in seconds.
Warning
prediction_timeout_s will be clamped to 1 second as the prediction is getting worse with time.
Setting this parameter to 0 disables the ZED SDK predictions.

◆ allow_reduced_precision_inference

bool allow_reduced_precision_inference

Whether to allow inference to run at a lower precision to improve runtime and memory usage.

It might increase the initial optimization time and could include downloading calibration data or calibration cache and slightly reduce the accuracy.

Note
The fp16 is automatically enabled if the GPU is compatible and provides a speed up of almost x2 and reduce memory usage by almost half, no precision loss.
This setting allow int8 precision which can speed up by another x2 factor (compared to fp16, or x4 compared to fp32) and half the fp16 memory usage, however some accuracy could be lost.
The accuracy loss should not exceed 1-2% on the compatible models.
The current compatible models are all sl::AI_MODELS::HUMAN_BODY_XXXX.