Tutorial - Using Spatial Mapping
This tutorial shows how to use a ZED stereo camera to capture a live 3D reconstruction of your environment. The code starts spatial mapping for 500 frames, extracts a mesh, filters it and saves it as an OBJ file.
Getting Started #
- First, download the latest version of the ZED SDK.
- Download the Spatial Mapping sample code in C++, Python or C#.
Code Overview #
Open the camera #
Let’s initialize the camera. In this example, we use HD720
mode at 60 fps (which also has a wide FOV) to make sure camera tracking is reliable. We also select a right-handed coordinate system with the Y axis up, since it is the most common system used by 3D viewing software (Meshlab for example).
// Create a ZED camera object
Camera zed;
// Set configuration parameters
InitParameters init_params;
init_params.camera_resolution = RESOLUTION::HD720; // Use HD720 video mode (default fps: 60)
init_params.coordinate_system = COORDINATE_SYSTEM::RIGHT_HANDED_Y_UP; // Use a right-handed Y-up coordinate system
init_params.coordinate_units = UNIT::METER; // Set units in meters
// Open the camera
ERROR_CODE err = zed.open(init_params);
if (err != ERROR_CODE::SUCCESS)
exit(-1);
# Create a ZED camera object
zed = sl.Camera()
# Set configuration parameters
init_params = sl.InitParameters()
init_params.camera_resolution = sl.RESOLUTION.HD720 # Use HD720 video mode (default fps: 60)
init_params.coordinate_system = sl.COORDINATE_SYSTEM.RIGHT_HANDED_Y_UP # Use a right-handed Y-up coordinate system
init_params.coordinate_units = sl.UNIT.METER # Set units in meters
# Open the camera
err = zed.open(init_params)
if err != sl.ERROR_CODE.SUCCESS:
exit(1)
// Create a ZED camera object
Camera zed = newCamera(0);
// Set configuration parameters
InitParameters init_params = new InitParameters();
init_params.resolution = RESOLUTION.HD720; // Use HD720 video mode (default fps: 60)
init_params.coordinateSystem = COORDINATE_SYSTEM.RIGHT_HANDED_Y_UP; // Use a right-handed Y-up coordinate system
init_params.coordinateUnits = UNIT.METER; // Set units in meters
// Open the camera
ERROR_CODE err = zed.Open(ref init_params);
if (err != ERROR_CODE.SUCCESS)
Environment.Exit(-1);
Enable positional tracking #
Spatial mapping needs position tracking to be enabled first with enablePositionalTracking()
.
PositionalTrackingParameters tracking_parameters;
err = zed.enablePositionalTracking(tracking_parameters);
if (err != ERROR_CODE::SUCCESS)
exit(-1);
tracking_parameters = sl.PositionalTrackingParameters()
err = zed.enable_positional_tracking(tracking_parameters)
if err != sl.ERROR_CODE.SUCCESS:
exit(1)
PositionalTrackingParameters trackingParameters = new PositionalTrackingParameters();
err = zedCamera.EnableTracking(ref trackingParameters);
if (err != ERROR_CODE.SUCCESS)
Environment.Exit(-1);
Enable spatial mapping #
Spatial mapping setup works the same way as positional tracking: we create a SpatialMappingParameters
settings and call enableSpatialMapping()
with this parameter.
SpatialMappingParameters mapping_parameters;
err = zed.enableSpatialMapping(mapping_parameters);
if (err != ERROR_CODE::SUCCESS)
exit(-1);
mapping_parameters = sl.SpatialMappingParameters()
err = zed.enable_spatial_mapping(mapping_parameters)
if err != sl.ERROR_CODE.SUCCESS:
exit(1)
SpatialMappingParameters mappingParameters = new SpatialMappingParameters();
err = zed.EnableSpatialMapping(ref mappingParameters);
if (err != ERROR_CODE.SUCCESS)
Environment.Exit(-1);
It is not the purpose of this tutorial to go into the details of SpatialMappingParameters
class. For more information, read the API documentation.
Run live 3D reconstruction #
To start mapping an area, there is no need to call any function in the grab()
loop. The ZED SDK checks in the background that a new image, depth and position is available and automatically builds a 3D map asynchronously from this data.
In this tutorial, we simply grab 500 frames, check the 3D mapping state and then stop the loop to extract the resulting mesh.
// Grab data during 500 frames
int i = 0;
Mesh mesh; // Create a mesh object
while (i < 500) {
if (zed.grab() == ERROR_CODE::SUCCESS) {
// In background, spatial mapping will use new images, depth and pose to create and update the mesh. No specific functions are required here.
SPATIAL_MAPPING_STATE mapping_state = zed.getSpatialMappingState();
// Print spatial mapping state
cout << "\rImages captured: " << i << " / 500 | Spatial mapping state: " << mapping_state << " " << flush;
i++;
}
}
# Grab data during 3000 frames
i = 0
py_mesh = sl.Mesh() # Create a Mesh object
runtime_parameters = sl.RuntimeParameters()
while i < 3000:
if zed.grab(runtime_parameters) == sl.ERROR_CODE.SUCCESS:
# In background, spatial mapping will use new images, depth and pose to create and update the mesh. No specific functions are required here.
mapping_state = zed.get_spatial_mapping_state()
# Print spatial mapping state
print("\rImages captured: {0} / 3000 || {1}".format(i, mapping_state))
i = i + 1
// Grab data during 500 frames
int i = 0;
RuntimeParameters runtimeParameters = new RuntimeParameters();
while (i < 500) {
if (zed.Grab(ref runtimeParameters) == ERROR_CODE.SUCCESS) {
// In background, spatial mapping will use new images, depth and pose to create and update the mesh. No specific functions are required here.
SPATIAL_MAPPING_STATE mapping_state = zed.GetSpatialMappingState();
// Print spatial mapping state
Console.WriteLine( "Images captured: " + i + "/ 500 | Spatial mapping state: " + mapping_state.ToString());
i++;
}
}
Extract mesh #
After capturing a 3D map during 500 frames, we can now retrieve the mesh stored in the Mesh
object using extractWholeSpatialMap()
. This function will be blocking until the full mesh is available.
zed.extractWholeSpatialMap(mesh); // Extract the whole mesh
err = zed.extract_whole_spatial_map(py_mesh) # Extract the whole mesh
zed.ExtractWholeSpatialMap(); // Extract the whole mesh
📌 Note: It is possible to asynchronously retrieve a mesh during mapping. See the Using Spatial Mapping API section.
This mesh can be filtered (if needed) to remove duplicate vertices and unneeded faces. Then we save the mesh as an OBJ file for external use.
mesh.filter(MeshFilterParameters::MESH_FILTER::LOW); // Filter the mesh (remove unnecessary vertices and faces)
mesh.save("mesh.obj"); // Save the mesh in an obj file
filter_params = sl.MeshFilterParameters()
filter_params.set(sl.MESH_FILTER.LOW)
py_mesh.filter(filter_params) # Filter the mesh (remove unnecessary vertices and faces)
py_mesh.save("mesh.obj") # Save the mesh in an obj file
// Filter the mesh (remove unnecessary vertices and faces)
zed.FilterMesh(FILTER.LOW, ref mesh);
// Save the mesh in an obj file
zed.SaveMesh("mesh.obj", MESH_FILE_FORMAT.OBJ);
Disable modules and exit #
Once the mesh is extracted and saved, don’t forget to disable the mapping and tracking modules (in this order) and close the camera before exiting your application.
// Disable tracking and mapping and close the camera
zed.disableSpatialMapping();
zed.disablePositionalTracking();
zed.close();
# Disable tracking and mapping and close the camera
zed.disable_spatial_mapping()
zed.disable_positional_tracking()
zed.close()
// Disable tracking and mapping and close the camera
zed.DisableSpatialMapping();
zed.DisablePositionalTracking();
zed.Close();
Advanced Example #
To learn how to capture a live 3D mesh of the environment and display it as an overlay on the camera image, check the Live 3D Reconstruction sample code.
Next Steps #
At this point, you know how to retrieve the image, depth, odometry and 3D mapping data from ZED stereo cameras.
Read the next Object Detection tutorial to see how to detect and track persons in 3D.